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Henri Poincaré Nancy I, BP 239, F-54506 Vandœuvre-lès-Nancy Cedex, France
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Abstract
The two-time non-equilibrium correlation and response functions in 1D kinetic
classical spin systems with non-conserved dynamics and quenched to their
zero-temperature critical point are studied. The exact solution of the kinetic
Ising model with Glauber dynamics for a wide class of initial states allows
for an explicit test of the universality of the non-equilibrium limit fluctuation–
dissipation ratio X∞. It is shown that the value of X∞ depends on whether the
initial state has finitely many domain walls or not and thus two distinct dynamic
universality classes can be identified in this model. Generic 1D kinetic spin
systems with non-conserved dynamics fall into the same universality classes
as the kinetic Glauber–Ising model provided the dynamics is invariant under
the C-symmetry of simultaneous spin and magnetic-field reversal. While C-
symmetry is satisfied for magnetic systems, it need not be for lattice gases which
may therefore display hitherto unexplored types of non-universal kinetics.

PACS numbers: 05.20.−y, 05.40.−a, 05.70.Jk, 64.60.Ht, 75.40.Gb

1. Introduction

Understanding the long-time behaviour of strongly interacting systems with many degrees of
freedom and evolving far from equilibrium is an active topic of much current interest, see [1–4]
for recent reviews. Besides the more far-reaching aspects of disordered systems undergoing
glassy behaviour, many of the fundamental questions of non-equilibrium statistical mechanics
can already be studied in the conceptually simpler kinetic ferromagnetic systems. In several
instances, general ideas can be subjected to exacting tests because several non-trivial and
exactly solvable models are available.

In this paper, we consider the kinetics of a purely classical spin system with a non-
conserved order parameter and an equilibrium critical temperature Tc � 0 and quenched to a
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final temperature T � Tc from some initial state. Then fluctuations of the initial state will lead
on the microscopic level to the growth of correlated domains and the slow movement of the
domain boundaries will drive the irreversible time evolution of the macroscopic observables.
It has been realized in recent years that the associated ageing effects are more fully revealed
through the study of two-time correlation functions C(t, tw) and response functions R(t, tw)

(see section 2 for the precise definitions) and where t is referred to as the observation time while
tw is called the waiting time. In addition, it has been understood that correlation and response
functions must be studied together, since out of equilibrium the fluctuation–dissipation theorem
is no longer valid. It is usual to characterize the breaking of the fluctuation–dissipation theorem
in terms of the fluctuation–dissipation ratio (FDR) [5]

X(t, tw) := T R(t, tw)

(
∂C(t, tw)

∂tw

)−1

(1.1)

where at equilibrium, one would recover X(t, tw) = 1 (at T = 0, some care is needed to absorb
T into the definition of the response function). In the scaling limit, where simultaneously tw
and t − tw become large, one actually finds that the fluctuation–dissipation ratio X(t, tw) =
X̂(t/tw) satisfies a simple scaling law in terms of the scaling variable x = t/tw, see [4] for
a recent review. A quantity of particular interest is the limit fluctuation–dissipation ratio X∞
defined by

X∞ = lim
tw→∞( lim

t→∞ X(t, tw)) = lim
x→∞ X̂(x). (1.2)

For a quench into the disordered phase, it is known that X∞ = 0 in general. But for a critical
quench with T = Tc, Godrèche and Luck [6, 7] have proposed that X∞ should be a universal
quantity.

The evidence supporting this conjecture (which in this paper we shall call ‘universality’
for short) was based on the available results coming from exactly solvable kinetic spin systems
quenched from a fully disordered state and from simulations in the 2D and 3D kinetic Ising
models with Glauber dynamics, see [2] for a review. Further supporting evidence in favour
of the universality conjecture comes from field-theoretic two-loop calculations of the O(n)-
model, again starting from a fully disordered initial state [8, 9]. The universality of X∞ has
also been confirmed numerically for the 2D Glauber–Ising and voter models [10].

Statements about the universality of a physical quantity are best tested by varying
important control parameters of suitable models and then studying their effects. Indeed,
the role of spatially long-range initial correlations of the form

Cini(r) ∼ |r|−ν (1.3)

where ν is a control parameter, was studied in the kinetic spherical model at T = Tc [11]. It
was shown that there exists an unexpectedly rich kinetic phase diagram, depending on ν and
the space dimension d. In most of these phases, either X∞ = 0 or else it is independent of
ν, but in one phase X∞ was shown to be a function of ν [11], thus furnishing an important
qualification against the unrestricted universality of X∞.4 At present, it is not clear yet whether
these results might not simply reflect a peculiarity of the spherical model. Therefore, we shall
study here the non-equilibrium critical dynamics of 1D ferromagnetic spin systems quenched
to their critical temperature T = 0.

In order to get analytical results, we consider in section 2 the exactly solvable Glauber–
Ising model. We shall show that for initial correlations of the form (1.3) with ν � 0, we have
indeed universality of the entire function X̂(x), and thus in particular of X∞, in agreement
4 In this phase, both the space dimension d and the effective dimension D = 2 + ν of the initial correlations are
below the upper critical dimension d∗.
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with the Godrèche–Luck conjecture. However, in section 3 we study even more general
initial states which consist of large ordered domains and then show that the scaling function
X̂(x) as well as X∞ is different from those obtained for initial states of the form (1.3). We
thereby identify two dynamic universality classes. These results are extended in section 4
to generalized two-state spin systems evolving according to a non-conserved dynamics with
detailed balance. We show that those which satisfy a certain global symmetry (which we call
C-symmetry) are in one of the two universality classes found for the Glauber–Ising model. We
also comment on the fact that in lattice gases, there is no need to satisfy C-symmetry which
may lead to further non-universalities. We conclude in section 5.

2. Glauber dynamics with correlated initial conditions

We shall study the Ising chain with equilibrium Hamiltonian H = −J
∑

n snsn+1 where
sn = ±1 denotes the Ising spins and J > 0 is the interaction strength. We consider translation-
invariant initial distributions such that the initial magnetization m0 = 〈sn〉 should be different
from ±1, i.e. there is a finite density of domain walls at initial time. In the literature, usually
symmetric initial distributions with m0 = 0 are considered. In this section, we allow for
general non-symmetric initial distributions with −1 < m0 < 1. The case |m0| = 1 requires
separate treatment and is studied in section 3. In the absence of a magnetic field we assume
Glauber dynamics [12] for the stochastic time evolution of the spins. We set the time scale for
individual spin-flips to unity.

2.1. Two-time correlation function

It is convenient to write the two-time correlation function

Cn(t + τ, t) = Cn(t; τ) := 〈sn(t + τ)s0(t)〉 (2.1)

in the quantum Hamiltonian formalism, see [13, 14] for recent reviews. One has

Cn(t; τ) = 〈s|σ z
n exp(−H0τ)σ z

0 exp(−H0t)|P0〉 (2.2)

where σ
x,y,z
n are the Pauli matrices acting on the nth site of the chain and

H0 = 1

2

∑
n

(
1 − σx

n

) (
1 − γ

2
σ z

n

(
σ z

n−1 + σ z
n+1

))
(2.3)

is the Markov generator (stochastic Hamiltonian) for Glauber dynamics [15]. Furthermore,
|P0〉 is the probability vector representing the initial distribution of spins and the constant
summation vector 〈s| is the left steady state. The generator is constructed such that it satisfies
detailed balance with respect to the equilibrium distribution at temperature T of the 1D zero-
field ferromagnetic Ising model with interaction strength J . This is achieved by setting
γ = tanh (2J/T ) (we use units such that the Boltzmann constant kB = 1). We introduce the
shorthand

Cn := Cn(0, 0) Cn(t) := Cn(t; 0) = 〈sn(t)s0(t)〉 (2.4)

for the initial correlations and for the equal-time correlation function, respectively. Note that

Cn(t) = C−n(t) C0(t) = 1 ∀t � 0. (2.5)

For Glauber dynamics the time evolution of the spin-expectation is linear and at vanishing
temperature T = 0 satisfies a lattice diffusion equation for a 1D random walk with hopping
rate 1/2 [12]. The propagator

Gn(y) = e−yIn(y) (2.6)
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of the lattice diffusion equation involves the modified Bessel function In(y) [16] and describes
the probability of moving a distance of n lattice units after time y. Hence

〈s|σ z
n exp(−H0τ) =

∞∑
m=−∞

e−τ In−m(τ)〈s|σ z
m (2.7)

which immediately yields

Cn(t; τ) =
∞∑

m=−∞
e−τ In−m(τ)Cm(t). (2.8)

It remains to calculate the equal-time two-point correlation function Cm(t). For special
initial distributions this has already been done in the classical paper by Glauber [12]. For
our more general treatment we observe that the total correlation function may be split into
an interaction part C int

m (t) and a correlation part Ccorr
m (t). The latter vanishes for uncorrelated

(infinite-temperature) initial states. Then

Cm(t) = e−2t Im(2t) + 2
∞∑

k=1

e−2t I|m|+k(2t) +
∞∑

k=1

e−2t [I|m|−k(2t) − I|m|+k(2t)]Ck

=: C int
m (t) + Ccorr

m (t). (2.9)

The two-time autocorrelation function then follows from (2.8) by setting n = 0.
The Laplace transform of the interaction part of the two-time autocorrelation function

has already been studied in detail by Godrèche and Luck [6] and by Lippiello and Zannetti
[17]5. Here, we prefer to work in the more intuitive time domain, which allows for an
easier analysis of more general initial conditions. From (2.9), we also define C ini

n (t; τ) and
Ccorr

n (t; τ) which will be calculated separately and Cn(t; τ) = C ini
n (t; τ) + Ccorr

n (t; τ). Using
the completeness property

∑
n Gn = 1 of the lattice propagator we split the interaction part

into a contribution which is large at early times and a second contribution which dominates
the late-time behaviour. We find

C int
0 (t; τ) = exp(−(τ + 2t))I0(τ + 2t) + e−τ I0(τ )[1 − e−2t I0(2t)]

+ 4
∞∑

m=1

∞∑
k=1

e−2t I|m|+k(2t) e−τ Im(τ ). (2.10)

For t, τ � 1 only the late-time part (containing the double sum) plays a role. Using the
asymptotic Gaussian form

Gn(y) = 1√
2πy

exp

(
− n2

2y

)
(1 + O(y−1)) (2.11)

of the lattice propagator we can turn the sums into integrals. Setting

α =
√

τ

2t
(2.12)

we obtain

C int
0 (t; τ) = 4

π

∫ ∞

0
du

∫ ∞

0
dv exp(−u2 + (uα + v)2)

(2.13)
= 1 − 2

π
arctan α = 2

π
arctan

1

α
.

The correlation function depends only on the scaling variable α.
5 Multispin correlators and associated response functions of the 1D Glauber–Ising model have been studied recently
in [18, 19]. Two-time correlators of the Ising chain in a transverse field are calculated in [20].
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For later comparison with the response function, we now make a small change in notation,
in order to be compatible with the notation usually employed [6, 11, 17]. The quantity denoted
‘time’ t so far, we shall from now on call waiting time s = tw. In turn, we call tw +τ observation
time and write t := tw + τ . We repeat the correlation function in this notation, in agreement
with [6, 17]

C int
0 (t, tw) = 2

π
arctan

√
2tw

t − tw
. (2.14)

For later use, we also record the derivative of C int
0 with respect to tw. Keeping t fixed, we have

− ∂

∂tw
C int

0 (t, tw) = − 1

2π

1 + 2α2

α(1 + α2)
· 1

tw
=

√
2

π

x√
x − 1(x + 1)

· 1

tw
(2.15)

for either the scaling variable α or x = t/tw.
We still have to analyse the correlation part of the autocorrelation function which has not

been studied previously. In order to do so, we use the integral representation

Gn(y) = 1

2π

∫ π

−π

dq cos (qn) exp(−εqy) (2.16)

of the lattice propagator with the dispersion relation εq = (1 − cos q). This yields the exact
expression

Ccorr
0 (tw; τ) =

∞∑
m=−∞

e−τ Im(τ )Ccorr
m (tw)

=
∞∑

m=1

Gm(τ)

∞∑
n=1

Cn

2

π

∫ π

−π

dq sin (qm) sin (qn) exp(−εqtw).

(2.17)

For tw, τ � 1 the sum over m may be turned into an integral and the asymptotic expression
(2.11) can be used. After some algebra we find

Ccorr
0 (tw; τ) = 4α

π3/2t
1/2
w

∞∑
n=1

Cn

∫ π

0
dq q sin

(
qn√
tw

)
1F1

(
1

2
; 3

2
;α2q2

)
exp(−q2(1 + α)2)

(2.18)

where 1F1(a; b; x) is a confluent hypergeometric series [16]. In order to analyse the leading
behaviour for waiting times tw � 1 we have to distinguish three cases, which depend on the
form of the initial correlation. We shall in this section consider the following form:

Cn(0, 0) = Cn ∼ B

nν
for n → ∞ (2.19)

where ν � 0 and B are—a priori non-universal—control parameters. We also define the
unnormalized first moment

A :=
∞∑

n=1

nCn (2.20)

of the initial correlation function. We can now identify three distinct situations.

Case 1: A < ∞. Consider first the situation when the series A converges to a finite value.
Physical examples might be antiferromagnetic alternating-sign correlations or rapidly decaying
ferromagnetic correlations with ν > 2. For large waiting times tw the leading contribution to
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the integral in (2.18) comes from small values of the integration variable q (which describe
the long wavelength fluctuations of the spin system). We may then expand the sine in its
Taylor series and the integration can be performed explicitly from the series representation
of the hypergeometric function. Summing up the infinite series of Gaussian integrals yields
the surprisingly simple exact asymptotic expression, to leading order in tw

Ccorr
0 (tw, τ ) = A

π

α

1 + α2
· 1

tw
. (2.21)

Because of the extra factor 1/tw, this is asymptotically smaller than the interaction part (2.13).
Hence the non-universal amplitude A does not contribute to the leading late-time asymptotics
of the two-time autocorrelation function.

Case 2: Slowly decaying ferromagnetic correlations. We now consider the initial correlator
(2.19) with 0 < ν < 2 (such that A does not converge). Replacing the summation over n by
an integration

1√
tw

∞∑
n=1

Cn sin

(
qn√
tw

)
→

∫ ∞

0
dy C(y

√
tw) sin qy (2.22)

= Bt−ν/2
w 	(1 − ν) cos

(πν

2

)
|q|ν−1sign(q). (2.23)

This yields

Ccorr
0 (tw; τ) = B21−ν

π
	

(
1 − ν

2

) α

(1 + α2)(1+ν)/2 2F1

(
1

2
,

1 + ν

2
; 3

2
; α

1 + α2

)
· t−ν/2

w . (2.24)

Also in this case the correlation part of the two-time autocorrelation function is asymptotically
small compared to the interaction part. We conclude that the non-universal quantities B and
ν, which characterize the initial distribution before the quench, do not enter into the leading
late-time behaviour.

Case 3: Partial ferromagnetic long range order. The case ν = 0 corresponds to an
asymptotically constant spin–spin correlation function in the initial state, mimicking (partial)
ferromagnetic long range order. Such initial states may, for example, be obtained by quenching
from a uniformly magnetized initial state to zero temperature and zero field and have already
been studied in [11] where B = m2

0 was related to the initial magnetization. Performing the
same steps as in case 2 we find

Ccorr
0 (tw; τ) = 2B

π
arctan α. (2.25)

This is of the same order of magnitude as the interaction contribution to the correlation
function. For the total correlation function we obtain

C0(tw; τ) = 1 − (1 − B)
2

π
arctan α (2.26)

and therefore, for t fixed we have from (2.15)

− ∂

∂tw
C0(t, tw) = 1 − B

πtw

x

1 + x

√
2

x − 1
(2.27)

in terms of the scaling variable x = t/tw. This is of the same form as in the uncorrelated case,
but with a non-universal amplitude 1 − B determined by the initial long range order. The
form (2.27) proves universality with regard to details of the initial distribution of the two-time
correlation function, except for a non-universal amplitude.
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2.2. Two-time response function

Now we consider the time evolution of the local magnetization

Sn(t) = 〈
σ z

n (t)
〉 = 〈s|σ z

n exp(−Ht)|P0〉 (2.28)

for an initial distribution with initial magnetization m0 
= ±1. In zero field Sn(t) = m0 for
T = 0 Glauber dynamics. To study the linear response of the system to a small localized
perturbation by a magnetic field we let an external field act at site 0 of the lattice. In the
quantum Hamiltonian formulation this perturbation of the zero-field dynamics is represented
by the perturbed Markov generator

H = H0 + V (h). (2.29)

The perturbation V (h) is determined by the requirement that the full generator H satisfies
detailed balance with respect to the equilibrium distribution

P ∗ ∼ exp

[
1

T

∑
n

(J snsn+1 + hs0)

]
(2.30)

of the ferromagnetic Ising system with interaction strength J and local magnetic field h at
site 0. This requirement, on which the usual equilibrium fluctuation–dissipation theorem is
based, does not uniquely fix V , as different dynamical rules may lead to the same equilibrium
distribution (2.30). In [6] a heat-bath prescription was used to implicitly define V . Here
we follow more closely the philosophy of Glauber [12] and define a minimally perturbed
dynamics by

V = 1

2

(
1 − σx

0

) [
1 − γ

2
σ z

0

(
σ z

−1 + σ z
1

)] [
exp

(−(h/T )σ z
0

) − 1
]
. (2.31)

At zero temperature one has γ = 1. We shall use the dimensionless field strength h/T

throughout this work.
Following standard procedures we let the field act at time tw and calculate the linear

response function (in units of T)

Rn(t, tw) = Rn(tw; τ) = δ

δh(tw)
Sn(t) (2.32)

at observation time t. As before τ = t − tw � 0 is the time elapsed after the perturbation.
By expanding the full time evolution operator exp (−Ht) in powers of h we find from (2.28),
(2.32)

Rn(tw; τ) = −〈s|σ z
n exp(−Hτ)V ′exp(−Htw)|P0〉. (2.33)

Here V ′ is the derivative of V with respect to h/T taken at h = 0. Using (2.7) we see after a
little algebra that the autoresponse function (n = 0) factorizes

R0(tw; τ) = e−τ I0(τ ) [1 − C1(tw)1] (2.34)

into the autopropagator G0(τ ) and a contribution involving the two-point correlation function
at time tw.

To calculate the interaction part of the response function we deduce by analogy with
(2.10)

1 − C int
1 (t) = e−2t (I0(2t) + I1(2t)). (2.35)

For large times tw � 1 we then find

Rint
0 (tw; τ) = 1√

2πτ

2√
πtw

= 1

πtw

1

α
. (2.36)
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With α2 = (x − 1)/2 one obtains the autoresponse function in terms of the scaling variable
x = t/tw. Interestingly, the same asymptotic result was found in [6] for heat-bath dynamics.

The calculation of the correlation part of the autoresponse function proceeds along the
same lines as the calculation of the autocorrelation function. We find

Case 1: A < ∞. Here

Ccorr
1 (tw) = A

4π1/2t
3/2
w

(2.37)

for large tw. Comparison with (2.35) shows that we have a subleading behaviour of the
correlation contribution.

Case 2: Weakly decaying ferromagnetic correlations. Computing the correlation as above
leads to

Ccorr
1 (tw) = B

2ν
√

π
	

(
1 − ν

2

)
t−(ν+1)/2
w (2.38)

which corresponds again to subleading behaviour. Hence initial correlations decaying to zero
do not change the asymptotic behaviour of the autoresponse function.

Case 3: Ferromagnetic long range order. For ν = 0 (correlations decaying to a constant
value B) we obtain

Ccorr
1 (tw) = B√

πtw
(2.39)

which is of the same order as the interaction part. Therefore,

R0(tw; τ) = (1 − B)

π
√

2τ tw
= 1 − B

2πtw

1

α
. (2.40)

We see from equations (2.27), (2.40) that the same non-universal amplitude enters the two-time
correlation function and the response function, respectively.

We can now state the main result of this section: in each of the cases 1–3 the fluctuation–
dissipation ratio X = R/Ċ does not depend on the initial state and is given by

X(t, tw) = R(t, tw)

(
∂C(t, tw)

∂tw

)−1

= X̂(x) = x + 1

2x
. (2.41)

The same result was obtained in [6] for different microscopic dynamics and uncorrelated
initial states. We note in passing that one may easily check that also for complete initial
antiferromagnetic order Cn = (−1)n the FDR has the same asymptotic form. In the limit
x → ∞ we find

X∞ = lim
x→∞ X̂(x) = 1

2 (2.42)

in full agreement with the conjecture [6, 7] that X∞ is a universal constant.

3. Low-temperature initial states

In the previous section, we assumed a translation-invariant state with a finite density of domain
walls in the Ising system at the initial time. However, at very low temperatures it is more
relevant to study the time evolution of an almost ordered system with only finitely many domain
walls at the initial time. For definiteness we consider two domain walls located at sites −L

and L respectively of the lattice. This corresponds to the initial configuration

P0 = · · · ↓↓↓↑↑ · · · ↑↑↓↓↓ · · · (3.1)
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where the inversions of the spins occur at the positions −L and +L, respectively. Although
these initial conditions break translation invariance, we have chosen the coordinate system
such that reflection symmetry with respect to the origin is maintained. This is not crucial, but
simplifies some of the exact expressions to be derived below.

In order to calculate the two-time correlation function we use the enantiodromy relation

HT
0 = BHAB−1 (3.2)

between Glauber dynamics and diffusion-limited pair annihilation (DLPA) [13, 21]6. The
process DLPA describes independent random walkers hopping with rate 1/2 to a nearest-
neighbour site and annihilating instantaneously upon encounter. Here HT

0 is the transpose
of the Hamiltonian for zero-temperature Glauber dynamics, HA is the Markov generator for
DLPA and B is the factorized similarity transformation B = b⊗N with the local transformation
matrix

b =
(

1 −1
0 2

)
. (3.3)

With the enantiodromy relation (3.2) and the initial state (3.1) one obtains in the thermodynamic
limit N → ∞

Cm,n(t) = 〈s|σ z
mσ z

n exp(−H0t)|P0〉 = 〈s|
L∏

k=−L

σ z
k exp(−HAt)|m, n〉. (3.4)

By identifying spin up with a vacancy and spin down with a particle in the process of diffusion-
limited annihilation the vector |m, n〉 is the state with two particles located at sites m, n and
empty sites everywhere else [13]. Hence the calculation of the two-point correlation function
is reduced to a two-particle problem of annihilating particles.

The two-time autocorrelation function at site n = 0 is given by (2.8) in terms of the
equal-time correlation function. By reflection symmetry one has C−m,0(t) = C0,m(t) and
therefore we may write

C0(tw; τ) = 1 − 2
∞∑

m=1

e−τ Im(τ )[1 − C0,m(tw)]. (3.5)

With (3.4) one has

1 − Ck,l(t) =
∞∑

x=−∞

∞∑
y=x+1

〈s|
(

1 −
L∏

k=−L

σ z
k

)
|x, y〉P(x, y; t |k, l; 0) (3.6)

where the two-particle propagator

P(x, y; t |k, l; 0) = e−2t [Ik−x(t)Il−y(t) − Ik−y(t)Il−x(t)] (3.7)

for DLPA is the probability that two independent random walkers who started at k, l have
reached sites x, y after time t without having met on the same site. This yields

1 − C0,m(t) = 2
L∑

y=−L

e−2t Iy(t)

L+m∑
x=L+1−m

Ix(t). (3.8)

We are interested in the derivative ∂C(t, tw)/∂tw for large t. For an initial size 2L + 1
of the domain of flipped spins we consider the regime where tw � L2 since at earlier times
fluctuations in the initial positions of the domain walls have not reached the origin and hence
6 This relation is not to be confused with the duality relation [22] between Glauber dynamics and diffusion-limited
pair annihilation.
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would lead to trivial behaviour. To calculate the derivative of the correlator we express the
exact expression (3.5) in terms of the variables tw, t as in (2.14). Some algebra similar to the
previous sections yields for fixed t

− ∂

∂tw
C0(t, tw) = 2L + 1√

2π3t3
w

(
1√
2α

+ arctan(
√

2α)

)
. (3.9)

With (2.31), (2.33) the autoresponse function is given by

R(tw; τ) = G0(τ )
1

2
(2 − C0,1 − C−1,0(tw))

= G0(τ ) [GL(tw) + GL+1(tw)]
L∑

y=−L

Gy(tw) (3.10)

where we used (3.6). In the regime tw � L2 this reduces to

R(tw; τ) = 2L + 1√
2π3

1√
2α

· t−3/2
w . (3.11)

As expected both the autocorrelation function and the autoresponse function contain the
non-universal amplitude 2L + 1 which is the initial size of the flipped domain. However, the
FDR is a universal function of the scaling variable x = 1 + 2α2. We find

X(t, tw) = X̂(x) = 1

1 +
√

x − 1 arctan (
√

x − 1)
. (3.12)

This scaling function is different from (2.41), in particular

X∞ = 0 (3.13)

in contradiction to the universality hypothesis for critical dynamics as formulated in [6].
It might be helpful to restate our results in terms of scaling functions. In the ageing

regime, where both tw and t − tw become large, one expects at criticality, see e.g. [2]

C(t, s) = s−afC(t/s) R(t, s) = s−1−afR(t/s) (3.14)

where a is a non-equilibrium exponent and such that for large arguments x → ∞,
fC,R(x) ∼ x−λC,R/z which defines the autocorrelation and autoresponse exponents λC and
λR , respectively. This implies that X̂(x) ∼ x(λC−λR)/z for x → ∞. The dynamical exponent
z = 2 throughout in the model at hand but the other exponents depend on the initial conditions
as follows. If we take an initial state with decaying correlation of the power-law form (2.22),
we read off from the results of section 2

a = 0 λC = 1 = λR. (3.15)

However, for an initial state of the form (3.1), we find

a = 1
2 λC = 0 λR = 1. (3.16)

We therefore see explicitly that the different forms of the scaling function X̂(x) signal two
distinct dynamical universality classes.

4. C-violation and non-universality

In the previous sections, we considered special spin-flip dynamics which in zero field reduces
to Glauber dynamics. The most general flip rates for a local magnetic field which (i) satisfy
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detailed balance with respect to the equilibrium distribution (2.30), (ii) correspond to reflection-
symmetric finite-range interactions and (iii) are non-conserved and in particular lead to Glauber
rates for h = 0 are as follows:

↑↑↑ → ↑↓↑ with rate (1 − γ )f1 exp(−h/T )

↑↓↑ → ↑↑↑ (1 + γ )f1 exp(h/T )

↑↑↓ → ↑↓↓ f2 exp(−h/T )

↑↓↓ → ↑↑↓ f2 exp(h/T )

↓↑↑ → ↓↓↑ f2 exp(−h/T )

↓↓↑ → ↓↑↑ f2 exp(h/T )

↓↑↓ → ↓↓↓ (1 + γ )f3 exp(−h/T )

↓↓↓ → ↓↑↓ (1 − γ )f3 exp(h/T ).

Here fi = fi(h/T ) which may also depend on the neighbouring spin variables and must be
such that fi(0) = 1. With these functions the flip rates at site 0 may be written as

w(h) =
[
1 − γ

2
s0(s−1 + s1)

]
exp(−h/T s0)

× [f1 + 2f2 + f3 + (f1 − f3)(s−1 + s1) + (f1 − 2f2 + f3)s−1s1 + SRT]

=
[
1 − γ

2
s0(s−1 + s1)

]
exp(−h/T s0)[g0 + g1(s−1 + s1) + g2s−1s1 + SRT]. (4.1)

The short range terms SRT (which vanish for pure nearest-neighbour interactions) involve
lattice sites at distances |k| > 1 from the origin. Glauber dynamics [12] corresponds to
g0 = 1, g1 = g2 = 0. With these rates the Markov generator H takes the form H = ∑

n hn

with the local spin flip generators hn defined by (2.3) for n 
= 0 and

h0 = 1
2

(
1 − σx

0

)
ŵ(h). (4.2)

Here ŵ(h) is the diagonal matrix obtained from (4.1) by replacing the classical spin variables
si by the Pauli matrices σ z

i [13].
To first order in h the perturbation V of the stochastic time evolution that corresponds to

this general choice of rates is obtained from the expansion of ŵ(h) to first order in h. This
leads to the following general form of the response function:

R(tw; τ) = G0(τ )
〈[

s0 − γ

2
(s−1 + s1)

]
[s0 − g′

0 − g′
1(s−1 + s1) − g′

2s−1s1 − · · ·]
〉

(4.3)

where the correlation function is evaluated at time tw. The dots denote contributions
from the SRT next-nearest-neighbour interactions and the constants g′

i are defined by
g′

i = T ∂gi/∂h|h=0. Glauber dynamics as used in the previous sections corresponds
to the choice g′

i = 0 [12]. The heat-bath dynamics of [6] corresponds to the choice
g′

0 = g′
2 = 0, g′

1 = −γ /2.

4.1. C-invariance

In the context of spin systems the stochastic dynamics defined by the rate functions fi must
remain invariant under simultaneous reversal of all spins sk → −sk and change of sign in
the external magnetic field. This global symmetry is an automorphism on the state space
analogous to charge conjugation in the quantum field theory of elementary particles. Because
of this analogy, we shall refer to it as C-symmetry. C-symmetry of the rates requires the
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following properties:

f1(h) = f3(−h) (4.4)

f2(h) = f2(−h) (4.5)

of the rate functions. Therefore g′
0(0) = g′

2(0) = 0 for C-invariant systems.
For translation-invariant initial distributions the response function (4.3) at T = 0

(corresponding to γ = 1) then takes the form

R(C)(tw; τ) = G0(τ )

[
1 − C1(tw) + g′

1
d

dtw
C1(tw) −

〈(
s0 − 1

2
(s−1 + s1)

)
(· · ·)

〉]
(4.6)

where equations (2.2), (2.3) were used. The dots denote further SRT terms coming
from unspecified non-nearest-neighbour short range interactions. For long times the first
contribution (proportional to 1 −C1(t)) contains no non-universal parameter of the dynamics.
This is indeed the leading contribution since the second contribution, being a time derivative
with respect to tw, is subleading. Finally, the third term is a second-order (lattice) partial
space derivative which by dynamical scaling is of the same subleading order in time as a time
derivative.

4.2. Consequences for non-universality

The C-symmetry is a physical requirement that any spin dynamics must satisfy. However,
the Ising model may also be regarded as a classical lattice gas model, see e.g. [23, 24]. In
this interpretation the equilibrium distribution (2.30) describes a system of hard-core particles
with attractive nearest-neighbour interactions which may occupy the sites of a lattice, as
indicated by the occupation numbers ni = (1 − si)/2 ∈ {0, 1}. The external magnetic field
then corresponds to a chemical potential and a spin-flip corresponds to particle/vacancy
interchange, i.e., an exchange of particles with an external reservoir. Clearly, in this
interpretation of the same model there is no need to enforce the constraints (4.4), (4.5).
Hence it is interesting to investigate universality in the absence of this symmetry.

The response function contains the same universal part R(C) from equation (4.6) as in the
symmetric case plus two further terms

R(tw; τ) = R(C)(tw; τ) − G0(τ )[(1 − γ )m0g
′
0 − (γm0 − 〈s1(tw)s0(tw)s1(tw)〉)g′

2]. (4.7)

The first term in the second line vanishes at T = 0 since then γ = 1. The second term is
non-zero only for symmetric initial states with m0 = 0. As a function of time it is of the same
order as R(C)(tw; τ).

5. Conclusions

Our study of universality in the critical, non-conserved, dynamics of purely classical quenched
lattice models has uncovered some of the basic mechanisms behind the universality of the
scaling of correlation and response functions. Explicit calculations for 1D kinetic spin systems
with non-conserved dynamics and which generalize the Glauber–Ising model have shown that
the asymptotic form of the two-time response function does not depend on the microscopic
form of the stochastic dynamics, provided only that C-symmetry holds7. Furthermore, in the
scaling limit tw � 1 and t − tw � 1 both the response function and the time derivative of the
7 For the 1D Glauber–Ising model, we have explicitly shown that our realization of Glauber dynamics reproduces
the same results as the heat-bath dynamics studied in [6, 17].
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associated two-time correlation are largely independent of the form of the correlations in the
initial state, in agreement with the expected universality of the fluctuation–dissipation ratio
X = X̂(x) and its limit values X∞ = limx→∞ X̂(x). This universality holds true with respect
to the long-range decay of the initial correlations (see equation (1.3) with ν � 0) and also with
respect to the ‘details’ of the dynamics. On the other hand, we have also shown the existence
of two distinct kinetic universality classes which arise for initial magnetization |m0| = 1 and
|m0| < 1, respectively.

In the absence of C-invariance these results only hold true for symmetric initial states
with m0 = 0. For m0 
= 0, a non-universal part will contribute to the long-time behaviour of
two-time correlation and response functions. Since lattice gases are in general not C-invariant,
a study of these systems will make such terms apparent. In this context, recent attempts
[25, 26] to construct algorithms which allow us to measure the two-time response directly,
may be of value.

Finally, the available exactly solvable models (the 1D Glauber–Ising model and the kinetic
mean spherical model) have revealed two distinct possible routes towards modifications of
critical dynamics beyond a fully disordered initial state: (1) the presence of large ordered
domains and (2) the interplay of strong initial fluctuations with the thermal fluctuations of
the bulk. However, in these models, the two-point functions decouple and can be studied
independently of any longer-range correlations. A test of our scenario of possible non-
universalities in more general systems, such as the 2D Glauber–Ising model, is called for.
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